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. ABSTRACT 

i 
r 1  

Graviatational radiation from pu-sating and rota ing objects  i s  

calculated using the formula obtained with the w v n k  field l imit  of general  

rclntivity. The c a s e s  of rotation and oscillation a r e  f i r s t  considered 

scparately.  Then the effects of roatation on rad ia l  oscil lations a re  in-  

vestigated. Numerical es t imates  a r e  made with data  relevant to a neutron 

s t a r .  It i s  concluded that mos t  of the energy a neutron star m a y  acqui re  

during it s formation is dissipated rapidly, unless  the rotation is quite 

slow. 

INTRODUCTION , 
The energy loss by gravitational radiation from a system of bod!ee 

moving with velocities sma l l  compared to that of light is given by the 

wcak field l imit  to general  relativity as  ( Landau and Lifshitz, 1962 ) 

i 

where 

defined a s  

is the quadrupole moment tensor  of the mass distribution, 

Angular momentum may a l so  be lost through gravitational radiation. 

thc r a t e  is  given by ( P e t e r s ,  1964 ) 

. _- 

Greek l e t t e r s  range from 1 to 3, and summation over repeated 
indices 1s understood, unless stated otherwise. 

* 
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cijk is a complctcly ,-rntisymmetri.c unit pseudo-tensor.  

Makung use of these equations, we calculate the loss  of energy and 

angular momentum f r o m  various oscillationg and rotating sys tems.  F r o m  

this we est imate  the damping t ime of the motion. 

ROTATING ELLIPSOID 

Gravitational radiation from a rotating ellipsoid of mass m, uniform 

density f and semi-axes  (a, &q,) has been caiculdizd. [ C. W .  Chin, 1965 ) '  

We give here  a s impler  derivation, which will 'be useful for us iatec-.  

Let the angular velocity& be in the z-direction. In the body s e t  
1 1 1  o f  axes  ( x  1 3 ) , all off-diagonal elements of the quadrupole moment 

about the origin vanish because of the reflection symmetry.  The diagonal 

e lements  a r e  given b y  

where i=l, 2, 3 and is not summed over. - 
In t e r m s  of the space set  ( % g  5 ), we have 

X I =  rc@J-lt -f- y s k n t  
y / =  -rs.;.Jlt 4- y m R t  

\\.hilt. for - '  in  thc space s v t ,  we have 
L, 

b 
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Further  reductions lead to 

If the configuration does not differ  much from that of a sphere of 

radius R, we can put 

&-a, = yR 

where 7 is a small quantity. Equation (7) can then be wri t ten as 

The rotational energy of the ellipsoid may  be calculated classical ly  and 

is  given by 

Substituting this into equation(7 , we readily find 

n,Y 
I $  k t  

n - 9  = 

where 
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b with 7 small .  40 is the angular velocity a t  t=O. 

In the case  of a Jacobi ellipsoid, 7 also depends on /I' , and 

hence eqn.( / I )  is no longer completely cor rec t .  W e  a l so  r e m a r k  that 

i t  is not c lear  whether a rotating neutron star can be a Jacobb ellipsoid, 

NON-RADIAL OSCILLATIONS O F  A SPHERE 

Consider a n  axisymmetr ic  oscillation of a spherical  mass of in-  

cxr?pressible fluid of constant density ? 
surface can be described by 

and radius . The boundary 

I 
where the 4 5 a r e  €unctions of time. We assume d,, (( / . The p*l '5 

Legcndre functions. Because the fluid is of constant density, equation 

is sufficient for the calculation of the 

need be evaluated sinee the off-diagonal elements vanish because of the axial  

symmet ry  and since &),, =BLL = -$ & because the t r ace  

vanishes.  We find 

a r c  

. Only one diagonal element 

of 

To find the energy loss ,  we assume: 
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5 I 
I * ’  

where d,o is the amplitude, ... assumec to vary  nly slowly with t ime 

so  that in calculating we can t rea t  i t  as constant. 

Up to t e r m s  l inear in d M  , pc is the only contributing mode. 

We then find for ‘ the energy loss  from the r4-mode, averaged over  a 

full cycle in this l inearised approximation 

Now the energy k*. of the fx oscillation is  given by ( Rayleigh I )  

F r o m  equations (16)  and 07) , we have 

where 

W e  thus sc’c that thc. fa mode oscillation is damped exponentially. Thus 
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6 af ter  a short  t ime, only the higher modes remain.  F r o m  equation(1V) , 
I 

we see  that the coefficient of the coupled t e r m  $ ~ a ( h + &  is of the same o rde r  

of magnitude as the square t e r m  dY . Thus, for the mode with the la rges t  

amplitude, we can neglect the c r o s s  t e rm and take the square term to  be 

the only contribution to B3j , in  which case  the energy loss  expression 

f r o m  this n-th mode becoms 

a 

Equations (17) and (? 0) then would give 

where 

Thus, the higher modes would be damped at a much slower r a t e  than the 

f, -mode. HoweLer, in the non-linear domain, the dynamic coupling 

between the various modes should be considered. This couflling could give 

a s t ronger  damping because of energy t ransfer  f rom the higher modes 

into the mode. Furthermore,  the oscillations would not be purely 

harmonic a s  given by equation ( I C )  . Thus our analysis shouldbe in te r -  

p rc t ed  ;is giving a n  essentially qualitative description of the actual picture .  

Supposc now the above pulsating object is a l so  rotating slowly. 

To the f i r s t  o r d e r  in a/& 
i t  should be even in 

, the energy loss  remains unchanged because 

. Angular momentum, however, will be lost  a t  a 
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7 . 
6 rate given by equation (3)  i f  the rotation is  about an  axis  other than that of 

symmetry ,  say the x-axis. The loss rate can then be readily calculated 

using the same technique that led to equation (7 ) . The resu l t  when we 

consider only the fa -mode i s  

I 

4 
For  h igher  m o d e s ,  the numerical  coefficient would be different and O(ao 

would replace 

(%) , the rotation is damped much more  slowly _than the pulsation. By 

the t ime the pulsation becomes insignificant, mush of the rotation would 

s t i l l  p e r s i s t .  

. F r o m  equation (23) , it i s  seen that for smai i  

THE E F F E C T  O F  ROTATION ON RADIAL OSCILLATIONS 

In the foregoing we have been considering only the directly radiating 

modes.  A purely r a d i a l  mode does not rad0iate; hence energy might be 

s tored indefinitely in the mode, a t  least  i f  neutrino p rocesses  and the like 

a r e  disregarded.  HGWCvcr, rotation would destroy the s p h e r i c d  sym-  

m e t r y  of the system, again leading to gravitational radiation. 

In this section we consider these effects of 

t e r m s  of order  (n/6)a into account. W e  consider a 

density pulsating in the lowest radial mode when the Lagr&an displace- 

ment  i s  given by E + =  d . r e  wr$ith d a constant. If this sphere 

i s  given a smal l  uniform rotation, the oscillations a r e  a l te red  both 

because thc> equilibrium shape ids changed and because the pulsation 

t-quxtions inclnde ct.ntrifugn1 and Coriolis g r c r  t e r m s .  

d 6 O t  

W ht. r i  axis ym R I P  t r ic pe r tu rba tions a I-c cons ide r c d, the linea r ize d 

cqunrior i  o f  motion for 5 i n  3 rotating frame 
r*-N 

anti W,~:rave::, !95R ) 



Here  unprimed quantities indicate the equilibrium values of a uni- 

formly rotating spheroid of constant density, and the pr imed ones a r e  the 

Euler ian  per turbed values. A 
assumed  t ime dependence @ 

is a Lagrangian displacement with a n  

To solve these qquations, we expand 

retaining t e r m s  up to those of order  /L : 

5 and 6' in  powers  of n. - 
A 

$0 - 

For oscil lations that a r e  originally ax isymmetr ic ,  d, = 0 . ( Clement,  1,965 ) 
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2 A l s o  the right-hand side of (25) is of o rde r  J l  

and the density perturbations should be independent of the sign of a 
Therefore  by substituting@?) into (25) and (26) , and comparing terms of 

different orders in JL , we obtain 

, because the p r e s s u r e  

. 
I -  

f8 ,  = F7-I = o 

501 = * 

TO solve for FrL or &j1 , we now turn to equation(J5) . The 

right-hand side of the equation involves the per turbed quantities 9’ , e’ , 
and 3’ . These can be expressed in  t e r m s  of the equilibrium values 

by  making use  of the continuity equation, Poisson’s  equation and the 

adiabatic relation between p res su re  and density variations respectively,  

a s  follows: 

in equation (zq) the equilibrium quantities are  again those of 
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a uniformly rotating m a s s  of fluid of constant density. Limiting ourselves  

to smal l  rotation, the p re s su re  is given by ( Lamb,1932; Chandrasekhar 

1962 ) * 

where we have made p vanish on the boundary surface 

The semi-axis  ( a,, a1=&, 
to R by  

a3  ) of the rotating ellipsoid id related 
I 

where e is the eccentricity given by 

1%). makirlg use of &) , R 9 )  , and ( 3 0 )  , we can rewri te  equation 
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(25) to the second order  of fi : e *  

An examination of (34) indicates that in the desnred solution, the 8 - 
dependence of 

e q u a t i o n Q t ) ,  we can write 

may be taken a s  $&d . Thus by a l so  making use of 

and for the internal gravitational potential: 

with go(.> , g L ( T l  andl f(f) sti l l  to ibe determined. 

By substituting (35) and (36) into (3u)  we would then have 



t c 

12 
L 

t 

By inspection, we see  that f'.)=Af gives a solution providea that 

sat isf ies  

where we have made use of the fact that in this ca se  - 2 d;v& = o  
1 while from Poisson, s equation, we have gl(v ) = k, -fa 

The constant f ? ~  can be determined in  a s t ra ightforward m a n  - 
ner  by demanding that the gravitational potential and its der ivat ives  a r e  

continuous on the disturbed boundary. The resul t  is  

which therefore  gives a A f rom equation (38) 
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Summing up, our solution for the Lagrangian displacement is: 

and . t he  new boundary becomes: 

with Ytd) given by equation(31 . 
We r e m a r k  here  that although our  solutions are. obtained by inspection 

f rom the 

Fur the rmore ,  equation (”9) gives an expression for  

8 -equation (25) , they sa t i s fy  all the boundary conditions. 
2 

: 

On substituting fo r  G2 and 

(UO) , we have 

k the values as given by equations (37) and 
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* * which agrees  with the corresponding expression of Ledoux. ( Ledoux, 

1945 ) 

With (41,) and (42) , the quadrupole moment tensor  aan  be 

readily evaluated, the time-dependent p a r t  of which is : 

T I I ~  t i z e - a v e r a g e d  energy loss  is then given by equation (!)as: 

Sinee  no angular momentum is lost  in  this case ,  the angular ,' 
velocity /L will remain  constant. Thus, all the energy loss  is at the gxpense 

of oscillation. With 6 given by equation (U I ]  , the total pulsation 

energy is: 

A comparison of (Y6) and (47) shows that the energy dec reases  exponen- 

t ially given by 
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NUMERICAL ESTIMATES AND CONCLUSION 
+ 

W e  now asscmble the various expressions for  the damping of 
I 4 oscillation, using data relevant to a neutron-star ,  ;le mass =./Mg , R " 1 0  C M  . 

For the oscillation frequency, we use 6 = 3x10 3 c p 5  for  the radial 

mode ( Tsuruta,  Wright and Cameron, 1965 )' and the expression for a n  

incompressible fluid for  the non-radial ones ( Lamb, 1932 ) t 

For the fa -oscillation, equations (10) and (17) giveb: 

where 

F O ~  4 -oscillation, equations (21) and (12) give: 

where 

- ----- 

The pyoblem of' gravfSationaP radiation from neutron stars has 
Seen considered by EL number of investfgattors,  the  f irst  of 
whom we wish ce acknowledge is Prof .  S.A.Mheeler. 

;k 
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For  rotation a n d  nearly radial oscillations, equations (90) and (94) give: 

where 

In equation(j3) we have used a Y- /.S 
Y =  'h  for a n  extremely relativistic, completely degenerate fermi g a s  

and y= '/3 for a periecr,  monoatomic gas.  We also r e m a r k  that is 

independent oJ the oscillation frequency in contrast  to k~ and Ky 

as a crude compromise between 

. 
F r o m  these expressions,  we can easily obtain an' upper l imit  

to the total oscillation energy a f t e r  any lenghth of t ime by taking the 

oritginal amplitude to be unity. We remember  that we have assumed uniform 

density for the equilibrium configuration in our work, which is of course  

not t rue  for  a neutron-star.  However, our calculations would s t i l l  give, 

a very  good idea under what conditions the oscillation energy can  s t i l l  be 

large cnough to bc of interest  in phenomena in supernova rcmanants .  

This can be compared with the resul t  of Finzi(  Finzi,  1965 ) , who showed 

that radial ossillarono can be effectively damped by the 

at a rate given by: 

pl -2rocesses 



The resu l t s  of damping i n  the various cases  ate tabulated as follows: 

€ne73 

From the table, we thus see that the only significaht surviving m o d e  af te r  

a time of 

the angular veiocity of biiurcation for  a n  incbmpressible object wouid be 

about 3.cX 10 Y' , while the centrifugal acceleration a t  the equator would 

become comparable to the gravitational acceleration for Jl about equai 

I O 3  yea r s  would be radial modes i f  fi * / O x :  By comparison, 

3 - I  

to l . 4 n  / o y  s s c - /  

The small angular velocity required for e f i c ? C E i V e  energy s torage 

p o s e s  s ser i sw problem wich r ega rd  co the angular momentum of the 

i - i e u ~ r o c  scar - *  
II we a s s a n e  that the neutron star is formed by  contraction 

f r o m  ar, originai s t a r  oi m a s s  = l ~ g  and radius E J 0 I /  c d  then if angu- 

l a r  momentum is cai-iSe;vedl, the angular velcoity o€ the original star 





I 

f 

BIBLIOGRAPHY 

Lmb,11. Hydrodynamics, Cambridge University Press,6th 
Edition,1932 

LandecL and Lffshftz, The Classieal Thepry of F€eliSs, 
Pergman Fress,P962, s e c t i o n  104. 

r36ylelgh,J. The Theory o f  %Sound, Dover Ed., s e c t i o n  
364, (1945) 


